{ [es:EO]. [s:FSet{E}]. [i:Id].
    s(i)  {e:E| (loc(e) = i)  e  s  (e':E. (e'  s  ((e <loc e'))))}  
    supposing i  locs(s) }

{ Proof }



Definitions occuring in Statement :  es-fset-last: s(i) es-fset-loc: i  locs(s) es-locl: (e <loc e') es-loc: loc(e) es-eq: es-eq(es) es-E: E event_ordering: EO Id: Id uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] not: A implies: P  Q and: P  Q member: t  T set: {x:A| B[x]}  equal: s = t fset: FSet{s} fset-member: a  s
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a member: t  T and: P  Q all: x:A. B[x] implies: P  Q not: A es-fset-last: s(i) assert: b bfalse: ff ifthenelse: if b then t else f fi  false: False top: Top subtype: S  T prop: int_seg: {i..j} length: ||as|| true: True ycomb: Y lelt: i  j < k le: A  B nat: es-fset-loc: i  locs(s) sq_type: SQType(T) guard: {T} iff: P  Q rev_implies: P  Q cand: A c B es-locl: (e <loc e') null: null(as) btrue: tt l_member: (x  l) exists: x:A. B[x] decidable: Dec(P) or: P  Q sorted-by: sorted-by(R;L) last: last(L)
Lemmas :  last_wf es-fset-at_wf subtype_base_sq bool_wf bool_subtype_base false_wf es-fset-at-property es-locl_wf fset-member_wf es-eq_wf es-loc_wf not_wf es-fset-loc_wf Id_wf fset_wf es-E_wf event_ordering_wf not_assert_elim null_wf3 top_wf last_member l_member_wf sorted-by_wf es-le_wf assert_wf nat_wf le_wf length_wf1 non_neg_length length_wf_nat decidable__equal_int int_subtype_base es-locl_irreflexivity es-locl_transitivity2

\mforall{}[es:EO].  \mforall{}[s:FSet\{E\}].  \mforall{}[i:Id].
    s(i)  \mmember{}  \{e:E|  (loc(e)  =  i)  \mwedge{}  e  \mmember{}  s  \mwedge{}  (\mforall{}e':E.  (e'  \mmember{}  s  {}\mRightarrow{}  (\mneg{}(e  <loc  e'))))\}    supposing  i  \mmember{}  locs(s)


Date html generated: 2011_08_16-AM-11_05_56
Last ObjectModification: 2011_06_18-AM-09_38_09

Home Index