{ [Info,A1:Type]. [n:]. [X:EClass(A1)].  (Buffer(n;X)  EClass(A1 List)) }

{ Proof }



Definitions occuring in Statement :  es-interface-buffer: Buffer(n;X) eclass: EClass(A[eo; e]) nat: uall: [x:A]. B[x] member: t  T list: type List universe: Type
Definitions :  guard: {T} sq_type: SQType(T) atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" es-loc: loc(e) Id: Id es-E-interface: E(X) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b dep-isect: Error :dep-isect,  record+: record+ top: Top bag: bag(T) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) ge: i  j  less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B implies: P  Q false: False not: A le: A  B int: set: {x:A| B[x]}  ifthenelse: if b then t else f fi  empty-bag: {} single-bag: {x} lastn: lastn(n;L) eclass-vals: X(L) es-interface-predecessors: (X)(e) in-eclass: e  X subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] function: x:A  B[x] all: x:A. B[x] uall: [x:A]. B[x] so_lambda: x y.t[x; y] isect: x:A. B[x] axiom: Ax list: type List es-interface-buffer: Buffer(n;X) eclass: EClass(A[eo; e]) nat: equal: s = t universe: Type member: t  T MaAuto: Error :MaAuto,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  es-base-E_wf es-loc_wf Id_wf es-interface-top member_wf eclass_wf es-E-interface_wf es-interface-predecessors_wf eclass-vals_wf lastn_wf single-bag_wf bag_wf in-eclass_wf ifthenelse_wf es-E_wf event-ordering+_wf subtype_rel_wf nat_wf event-ordering+_inc subtype_rel_self nat_properties empty-bag_wf

\mforall{}[Info,A1:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[X:EClass(A1)].    (Buffer(n;X)  \mmember{}  EClass(A1  List))


Date html generated: 2011_08_16-PM-05_42_39
Last ObjectModification: 2011_06_20-AM-01_31_10

Home Index