{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [e:E(X)].
    (0 < ||(X)(e)||) }

{ Proof }



Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) length: ||as|| uall: [x:A]. B[x] top: Top less_than: a < b natural_number: $n universe: Type
Definitions :  uall: [x:A]. B[x] member: t  T so_lambda: x y.t[x; y] implies: P  Q all: x:A. B[x] top: Top length: ||as|| ycomb: Y subtype: S  T so_apply: x[s1;s2] es-E-interface: E(X) false: False iff: P  Q and: P  Q prop:
Lemmas :  es-E-interface_wf eclass_wf top_wf es-E_wf event-ordering+_wf event-ordering+_inc es-interface-predecessors-member es-interface-predecessors_wf Id_wf es-loc_wf nil_member l_member_wf length_wf1 non_neg_length length_wf_nat

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E(X)].    (0  <  ||\mleq{}(X)(e)||)


Date html generated: 2011_08_16-PM-04_33_54
Last ObjectModification: 2011_06_20-AM-00_55_25

Home Index