{ [Info:Type]. es:EO+(Info). X:EClass(Top). e:E(X).  (e  (X)(e)) }

{ Proof }



Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uall: [x:A]. B[x] top: Top all: x:A. B[x] universe: Type l_member: (x  l)
Definitions :  guard: {T} es-locl: (e <loc e') or: P  Q map: map(f;as) cons: [car / cdr] hd: hd(l) last: last(L) remove-repeats: remove-repeats(eq;L) select: l[i] prop: atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" record-select: r.x es-le: e loc e'  list: type List es-le-before: loc(e) union: left + right rev_implies: P  Q implies: P  Q iff: P  Q subtype: S  T top: Top event_ordering: EO es-E: E lambda: x.A[x] member: t  T strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B es-interface-predecessors: (X)(e) uall: [x:A]. B[x] isect: x:A. B[x] so_lambda: x y.t[x; y] all: x:A. B[x] function: x:A  B[x] set: {x:A| B[x]}  eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) universe: Type l_member: (x  l) equal: s = t es-E-interface: E(X) less_than: a < b nat: exists: x:A. B[x] product: x:A  B[x] cand: A c B MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  Unfold: Error :Unfold
Lemmas :  subtype_rel_self es-base-E_wf member-es-le-before es-E_wf nat_wf l_member_wf event-ordering+_inc es-le_wf member_wf es-le-before_wf2 member-es-interface-events event-ordering+_wf top_wf eclass_wf es-E-interface_wf es-locl_wf

\mforall{}[Info:Type].  \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}e:E(X).    (e  \mmember{}  \mleq{}(X)(e))


Date html generated: 2011_08_16-PM-04_33_36
Last ObjectModification: 2011_06_20-AM-00_55_12

Home Index