{ [Info,A:Type]. [I:EClass(A)]. [P:es:EO+(Info)  E  ].
  [p:es:EO+(Info). e:E.  Dec(P[es;e])]. [es:EO+(Info)]. [e:E].
    (I|p)(e) = I(e) supposing e  (I|p) }

{ Proof }



Definitions occuring in Statement :  es-interface-co-restrict: (I|p) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b decidable: Dec(P) uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] function: x:A  B[x] universe: Type equal: s = t
Definitions :  void: Void real: grp_car: |g| nat: null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q int: bag: bag(T) inr: inr x  natural_number: $n bag-size: bag-size(bs) inl: inl x  empty-bag: {} bag-only: only(bs) false: False eq_int: (i = j) bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} limited-type: LimitedType implies: P  Q fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) union: left + right or: P  Q set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B subtype: S  T lambda: x.A[x] top: Top in-eclass: e  X axiom: Ax es-interface-co-restrict: (I|p) eclass-val: X(e) assert: b uimplies: b supposing a so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) prop: universe: Type es-E: E event_ordering: EO event-ordering+: EO+(Info) uall: [x:A]. B[x] isect: x:A. B[x] member: t  T all: x:A. B[x] function: x:A  B[x] MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  apply: f a so_apply: x[s1;s2] decidable: Dec(P) equal: s = t CollapseTHENA: Error :CollapseTHENA,  RepUR: Error :RepUR
Lemmas :  event-ordering+_inc es-E_wf event-ordering+_wf decidable_wf es-interface-top subtype_rel_wf eclass_wf member_wf top_wf es-interface-co-restrict_wf in-eclass_wf assert_wf false_wf bag-only_wf bag_wf assert_of_eq_int bag-size_wf nat_wf eq_int_wf

\mforall{}[Info,A:Type].  \mforall{}[I:EClass(A)].  \mforall{}[P:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].
\mforall{}[p:\mforall{}es:EO+(Info).  \mforall{}e:E.    Dec(P[es;e])].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (I|\mneg{}p)(e)  =  I(e)  supposing  \muparrow{}e  \mmember{}\msubb{}  (I|\mneg{}p)


Date html generated: 2011_08_16-PM-04_26_56
Last ObjectModification: 2011_06_20-AM-00_51_06

Home Index