{ [Info:Type]. [es:EO+(Info)]. [A:Type]. [Xs:EClass(A) List].
    [X:EClass(A)]
      [e:E]. first-eclass(Xs)(e) = X(e) supposing e  X supposing (X  Xs) 
    supposing (XXs.(YXs.(X = Y)  X  Y = 0)) }

{ Proof }



Definitions occuring in Statement :  es-interface-disjoint: X  Y = 0 first-eclass: first-eclass(Xs) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] or: P  Q list: type List universe: Type equal: s = t l_all: (xL.P[x]) l_member: (x  l)
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a or: P  Q member: t  T l_exists: (xL. P[x]) and: P  Q exists: x:A. B[x] prop: cand: A c B so_lambda: x y.t[x; y] so_lambda: x.t[x] squash: T so_apply: x[s1;s2] true: True top: Top all: x:A. B[x] iff: P  Q implies: P  Q rev_implies: P  Q so_apply: x[s] l_all: (xL.P[x]) es-interface-disjoint: X  Y = 0 not: A false: False subtype: S  T
Lemmas :  in-first-eclass l_member_wf eclass_wf es-E_wf event-ordering+_inc event-ordering+_wf assert_wf in-eclass_wf es-interface-top l_all_wf2 es-interface-disjoint_wf first-eclass-val eclass-val_wf squash_wf es-interface-subtype_rel2 top_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[Xs:EClass(A)  List].
    \mforall{}[X:EClass(A)].  \mforall{}[e:E].  first-eclass(Xs)(e)  =  X(e)  supposing  \muparrow{}e  \mmember{}\msubb{}  X  supposing  (X  \mmember{}  Xs) 
    supposing  (\mforall{}X\mmember{}Xs.(\mforall{}Y\mmember{}Xs.(X  =  Y)  \mvee{}  X  \mcap{}  Y  =  0))


Date html generated: 2011_08_16-PM-04_27_43
Last ObjectModification: 2011_06_20-AM-00_51_50

Home Index