{ [Info,A:Type].
    Xs:EClass(A) List. es:EO+(Info). e:E.
      (e  first-eclass(Xs)  (XXs. e  X)) }

{ Proof }



Definitions occuring in Statement :  first-eclass: first-eclass(Xs) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q list: type List universe: Type l_exists: (xL. P[x])
Definitions :  last: last(L) append: as @ bs fpf: a:A fp-B[a] cons: [car / cdr] first-eclass: first-eclass(Xs) in-eclass: e  X minus: -n add: n + m strong-subtype: strong-subtype(A;B) real: int_iseg: {i...j} rev_implies: P  Q natural_number: $n subtract: n - m firstn: firstn(n;as) bfalse: ff eq_atom: eq_atom$n(x;y) atom: Atom es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y record-select: r.x dep-isect: Error :dep-isect,  record+: record+ btrue: tt sq_type: SQType(T) bool: subtype_rel: A r B true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  bnot: b rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) set_car: |p| grp_car: |g| rng_car: |r| limited-type: LimitedType atom: Atom$n rationals: Id: Id IdLnk: IdLnk nil: [] nequal: a  b  T  ge: i  j  not: A sqequal: s ~ t false: False null: null(as) union: left + right or: P  Q divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b cand: A c B l_member: (x  l) l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) set: {x:A| B[x]}  sq_exists: x:{A| B[x]} i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i infix_ap: x f y es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) apply: f a es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) void: Void top: Top int: uimplies: b supposing a less_than: a < b length: ||as|| nat: le: A  B prop: guard: {T} subtype: S  T lambda: x.A[x] equal: s = t member: t  T quotient: x,y:A//B[x; y] bag: bag(T) exists: x:A. B[x] implies: P  Q product: x:A  B[x] and: P  Q list: type List universe: Type isect: x:A. B[x] uall: [x:A]. B[x] all: x:A. B[x] function: x:A  B[x] iff: P  Q l_exists: (xL. P[x]) so_lambda: x.t[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] assert: b es-E: E event-ordering+: EO+(Info) event_ordering: EO axiom: Ax Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  eq_int: (i = j) bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} MaAuto: Error :MaAuto,  ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor,  tl: tl(l) hd: hd(l) empty-bag: {} bag-size: bag-size(bs) list_accum: list_accum(x,a.f[x; a];y;l) RepUR: Error :RepUR,  so_apply: x[s] locl: locl(a) Knd: Knd pair: <a, b> lt_int: i <z j le_int: i z j set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q unit: Unit
Lemmas :  eq_int_eq_true assert_witness assert_of_eq_int eqff_to_assert eqtt_to_assert assert_elim iff_weakening_uiff or_functionality_wrt_uiff3 or_functionality_wrt_uiff2 decidable_wf decidable__false list_accum_wf empty-bag_wf eq_int_wf bag-size_wf bag_wf list_accum_append or_functionality_wrt_iff l_exists_cons iff_transitivity l_exists_append append_wf last_wf null_wf ge_wf nat_properties nat_ind_tp l_exists_wf eclass_wf assert_wf le_wf guard_wf event-ordering+_wf es-E_wf iff_wf comp_nat_ind_tp nat_wf event-ordering+_inc uall_wf length_wf1 length_wf_nat top_wf member_wf decidable__assert null_wf3 last-lemma-sq pos_length not_wf uiff_transitivity not_functionality_wrt_uiff uiff_wf assert_of_null assert_of_bnot bnot_wf false_wf ifthenelse_wf true_wf bool_wf subtype_base_sq bool_subtype_base not_assert_elim es-base-E_wf subtype_rel_self btrue_wf firstn_wf rev_implies_wf length_firstn int_iseg_wf all_functionality_wrt_iff iff_functionality_wrt_iff l_exists_nil in-eclass_wf first-eclass_wf l_member_wf subtype_rel_wf es-interface-top

\mforall{}[Info,A:Type].
    \mforall{}Xs:EClass(A)  List.  \mforall{}es:EO+(Info).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  first-eclass(Xs)  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}X\mmember{}Xs.  \muparrow{}e  \mmember{}\msubb{}  X))


Date html generated: 2011_08_16-PM-04_18_42
Last ObjectModification: 2011_06_20-AM-00_46_08

Home Index