Nuprl Lemma : int_iseg_wf
∀[i,j:ℤ].  ({i...j} ∈ Type)
Proof
Definitions occuring in Statement : 
int_iseg: {i...j}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_iseg: {i...j}
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
intEquality, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType
Latex:
\mforall{}[i,j:\mBbbZ{}].    (\{i...j\}  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_33_17
Last ObjectModification:
2018_09_26-AM-11_48_23
Theory : int_1
Home
Index