{ [Info,A:Type]. [I:EClass(A)]. [P:es:EO+(Info)  E  ].
  [p:es:EO+(Info). e:E.  Dec(P[es;e])]. [es:EO+(Info)]. [e:E].
    (I|p)(e) ~ I(e) supposing e  (I|p) }

{ Proof }



Definitions occuring in Statement :  es-interface-restrict: (I|p) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b decidable: Dec(P) uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] function: x:A  B[x] universe: Type sqequal: s ~ t
Definitions :  eclass: EClass(A[eo; e]) prop: all: x:A. B[x] so_apply: x[s1;s2] assert: b in-eclass: e  X es-interface-restrict: (I|p) eclass-val: X(e) implies: P  Q can-apply: can-apply(f;x) p-restrict: p-restrict(f;p) do-apply: do-apply(f;x) isl: isl(x) p-compose: f o g p-filter: p-filter(f) outl: outl(x) ifthenelse: if b then t else f fi  member: t  T btrue: tt bfalse: ff so_lambda: x y.t[x; y] decidable: Dec(P) uall: [x:A]. B[x] or: P  Q false: False subtype: S  T
Lemmas :  decidable_wf assert_wf isl_wf false_wf in-eclass_wf es-interface-restrict_wf top_wf es-interface-top es-E_wf event-ordering+_inc event-ordering+_wf eclass_wf

\mforall{}[Info,A:Type].  \mforall{}[I:EClass(A)].  \mforall{}[P:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].
\mforall{}[p:\mforall{}es:EO+(Info).  \mforall{}e:E.    Dec(P[es;e])].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (I|p)(e)  \msim{}  I(e)  supposing  \muparrow{}e  \mmember{}\msubb{}  (I|p)


Date html generated: 2011_08_16-PM-04_26_42
Last ObjectModification: 2011_06_20-AM-00_50_59

Home Index