{ [Info:Type]
    es:EO+(Info). X:EClass(Top). e:E.
      le(X)(e) loc e  supposing e  le(X) }

{ Proof }



Definitions occuring in Statement :  es-le-interface: le(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e loc e'  es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] universe: Type
Definitions :  all: x:A. B[x] top: Top member: t  T so_lambda: x y.t[x; y] uall: [x:A]. B[x] uimplies: b supposing a so_apply: x[s1;s2] implies: P  Q and: P  Q subtype: S  T prop: guard: {T}
Lemmas :  es-le-interface-val es-le-interface_wf top_wf es-interface-subtype_rel2 es-E-interface_wf es-E_wf event-ordering+_inc event-ordering+_wf assert_witness in-eclass_wf assert_wf eclass_wf

\mforall{}[Info:Type].  \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}e:E.    le(X)(e)  \mleq{}loc  e    supposing  \muparrow{}e  \mmember{}\msubb{}  le(X)


Date html generated: 2011_08_16-PM-05_15_28
Last ObjectModification: 2011_06_20-AM-01_17_47

Home Index