{ [es:EO]. [a,b:E].
    (a = b) supposing ((pred(a) = pred(b)) and (first(b)) and (first(a))) }

{ Proof }



Definitions occuring in Statement :  es-pred: pred(e) es-first: first(e) es-E: E event_ordering: EO assert: b uimplies: b supposing a uall: [x:A]. B[x] not: A equal: s = t
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a member: t  T and: P  Q iff: P  Q rev_implies: P  Q prop: not: A or: P  Q all: x:A. B[x] implies: P  Q false: False
Lemmas :  pes-axioms es-le-pred es-le_wf es-E_wf es-pred_wf not_wf assert_wf es-first_wf event_ordering_wf es-loc-pred es-locl-antireflexive es-loc_wf

\mforall{}[es:EO].  \mforall{}[a,b:E].    (a  =  b)  supposing  ((pred(a)  =  pred(b))  and  (\mneg{}\muparrow{}first(b))  and  (\mneg{}\muparrow{}first(a)))


Date html generated: 2011_08_16-AM-10_33_22
Last ObjectModification: 2011_06_18-AM-09_14_52

Home Index