{ [es:EO]. [e1,e2:E].  es-rank(es;e1) < es-rank(es;e2) supposing (e1 < e2) }

{ Proof }



Definitions occuring in Statement :  es-rank: es-rank(es;e) es-causl: (e < e') es-E: E event_ordering: EO uimplies: b supposing a uall: [x:A]. B[x] less_than: a < b
Definitions :  pair: <a, b> guard: {T} natural_number: $n pi1: fst(t) es-rank: es-rank(es;e) real: grp_car: |g| subtype: S  T int: limited-type: LimitedType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  and: P  Q uiff: uiff(P;Q) intensional-universe: IType fpf: a:A fp-B[a] set: {x:A| B[x]}  assert: b subtype_rel: A r B eq_atom: eq_atom$n(x;y) bool: nat: not: A l_member: (x  l) implies: P  Q list: type List product: x:A  B[x] exists: x:A. B[x] infix_ap: x f y union: left + right or: P  Q Id: Id atom: Atom apply: f a top: Top universe: Type token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x record: record(x.T[x]) dep-isect: Error :dep-isect,  record+: record+ function: x:A  B[x] all: x:A. B[x] prop: less_than: a < b es-causl: (e < e') event_ordering: EO equal: s = t member: t  T axiom: Ax es-E: E uall: [x:A]. B[x] isect: x:A. B[x] uimplies: b supposing a Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  Unfold: Error :Unfold,  tactic: Error :tactic
Lemmas :  nat_wf Id_wf l_member_wf not_wf subtype_rel_wf member_wf intensional-universe_wf bool_wf subtype_rel_self event_ordering_wf es-E_wf es-causl_wf

\mforall{}[es:EO].  \mforall{}[e1,e2:E].    es-rank(es;e1)  <  es-rank(es;e2)  supposing  (e1  <  e2)


Date html generated: 2011_08_16-AM-10_24_39
Last ObjectModification: 2011_06_18-AM-09_09_15

Home Index