{ [es:EO]. [e:E].  (es-rank(es;e)  ) }

{ Proof }



Definitions occuring in Statement :  es-rank: es-rank(es;e) es-E: E event_ordering: EO nat: uall: [x:A]. B[x] member: t  T
Definitions :  pair: <a, b> pi1: fst(t) real: grp_car: |g| subtype: S  T int: limited-type: LimitedType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  and: P  Q uiff: uiff(P;Q) intensional-universe: IType fpf: a:A fp-B[a] set: {x:A| B[x]}  assert: b subtype_rel: A r B eq_atom: eq_atom$n(x;y) bool: prop: less_than: a < b not: A l_member: (x  l) implies: P  Q list: type List product: x:A  B[x] exists: x:A. B[x] infix_ap: x f y union: left + right or: P  Q Id: Id uimplies: b supposing a atom: Atom apply: f a top: Top universe: Type token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x record: record(x.T[x]) dep-isect: Error :dep-isect,  record+: record+ function: x:A  B[x] nat: es-rank: es-rank(es;e) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] event_ordering: EO equal: s = t member: t  T es-E: E all: x:A. B[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  Unfold: Error :Unfold,  tactic: Error :tactic
Lemmas :  es-E_wf event_ordering_wf subtype_rel_self bool_wf intensional-universe_wf subtype_rel_wf not_wf l_member_wf Id_wf nat_wf member_wf

\mforall{}[es:EO].  \mforall{}[e:E].    (es-rank(es;e)  \mmember{}  \mBbbN{})


Date html generated: 2011_08_16-AM-10_24_31
Last ObjectModification: 2011_06_18-AM-09_09_10

Home Index