{ es:EO. e2,e1:E.
    (e1 loc e2 
     (n:
          (e(e1,e2].||[e1, pred(e)]|| = n) supposing 
             ((n < ||[e1, e2]||) and 
             (0 < n)))) }

{ Proof }



Definitions occuring in Statement :  existse-between3: e(e1,e2].P[e] es-interval: [e, e'] es-le: e loc e'  es-pred: pred(e) es-E: E event_ordering: EO length: ||as|| nat: uimplies: b supposing a all: x:A. B[x] implies: P  Q less_than: a < b natural_number: $n int: equal: s = t
Definitions :  member: t  T prop: all: x:A. B[x] implies: P  Q uimplies: b supposing a existse-between3: e(e1,e2].P[e] exists: x:A. B[x] cand: A c B and: P  Q not: A assert: b bfalse: ff ifthenelse: if b then t else f fi  squash: T true: True iff: P  Q rev_implies: P  Q top: Top subtype: S  T es-le: e loc e'  or: P  Q guard: {T} nat: uall: [x:A]. B[x] sq_type: SQType(T) false: False decidable: Dec(P) length: ||as|| ycomb: Y
Lemmas :  es-E_wf es-le_wf nat_wf nat_properties length_wf1 es-interval_wf es-locl_wf es-pred_wf subtype_base_sq bool_wf bool_subtype_base false_wf es-locl-first es-le-iff es-pred-locl decidable__lt es-locl_transitivity1 es-le_weakening not_assert_elim es-first_wf assert_wf squash_wf true_wf not_wf es-interval-less es-le-pred length-append es-interval_wf2 top_wf Id_wf es-loc_wf es-interval-eq

\mforall{}es:EO.  \mforall{}e2,e1:E.
    (e1  \mleq{}loc  e2 
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (\mexists{}e\mmember{}(e1,e2].||[e1,  pred(e)]||  =  n)  supposing  ((n  <  ||[e1,  e2]||)  and  (0  <  n))))


Date html generated: 2011_08_16-AM-10_49_07
Last ObjectModification: 2011_06_18-AM-09_23_27

Home Index