{ [A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [P,Q:A  ].
  [f:x:A fp-B[x]].
    (filter(pL.Q[fst(pL)];fpf-vals(eq;P;f)) 
    ~ fpf-vals(eq;a.((P a)  (Q a));f)) }

{ Proof }



Definitions occuring in Statement :  fpf-vals: fpf-vals(eq;P;f) fpf: a:A fp-B[a] band: p  q bool: uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) apply: f a lambda: x.A[x] function: x:A  B[x] universe: Type sqequal: s ~ t filter: filter(P;l) deq: EqDecider(T)
Definitions :  so_lambda: x.t[x] so_apply: x[s] member: t  T pi2: snd(t) let: let fpf-vals: fpf-vals(eq;P;f) pi1: fst(t) ycomb: Y reduce: reduce(f;k;as) zip: zip(as;bs) filter: filter(P;l) bfalse: ff prop: btrue: tt implies: P  Q all: x:A. B[x] ifthenelse: if b then t else f fi  band: p  q map: map(f;as) uall: [x:A]. B[x] fpf: a:A fp-B[a] and: P  Q iff: P  Q unit: Unit bool: it:
Lemmas :  deq_wf bool_wf fpf_wf assert_of_bnot eqff_to_assert bnot_wf uiff_transitivity not_wf eqtt_to_assert assert_wf iff_weakening_uiff

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P,Q:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:x:A  fp->  B[x]].
    (filter(\mlambda{}pL.Q[fst(pL)];fpf-vals(eq;P;f))  \msim{}  fpf-vals(eq;\mlambda{}a.((P  a)  \mwedge{}\msubb{}  (Q  a));f))


Date html generated: 2011_08_10-AM-08_03_40
Last ObjectModification: 2011_06_18-AM-08_22_14

Home Index