{ [A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [x,y:A]. [v:B[x]]. [u:B[y]].
    uiff(x : v || y : u;v = u supposing x = y) }

{ Proof }



Definitions occuring in Statement :  fpf-single: x : v fpf-compatible: f || g uiff: uiff(P;Q) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] so_apply: x[s] uiff: uiff(P;Q) fpf-compatible: f || g uimplies: b supposing a member: t  T and: P  Q prop: so_lambda: x.t[x] implies: P  Q all: x:A. B[x] cand: A c B top: Top rev_implies: P  Q iff: P  Q fpf-single: x : v fpf-ap: f(x) pi2: snd(t)
Lemmas :  fpf-compatible_wf fpf-single_wf fpf-compatible-singles assert_wf fpf-dom_wf top_wf deq_wf fpf-single-dom-sq eqof_wf iff_weakening_uiff uiff_inversion deq_property

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[x,y:A].  \mforall{}[v:B[x]].  \mforall{}[u:B[y]].
    uiff(x  :  v  ||  y  :  u;v  =  u  supposing  x  =  y)


Date html generated: 2011_08_10-AM-08_06_44
Last ObjectModification: 2011_06_18-AM-08_25_00

Home Index