{ [A:Type]. [eq1,eq2:EqDecider(A)]. [f:a:A fp-Top]. [x:A].
    {x  dom(f) supposing x  dom(f)} }

{ Proof }



Definitions occuring in Statement :  fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top guard: {T} universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] guard: {T} uimplies: b supposing a member: t  T so_lambda: x.t[x] so_apply: x[s] implies: P  Q prop:
Lemmas :  fpf-dom_functionality top_wf assert_wf assert_witness fpf-dom_wf fpf_wf deq_wf

\mforall{}[A:Type].  \mforall{}[eq1,eq2:EqDecider(A)].  \mforall{}[f:a:A  fp->  Top].  \mforall{}[x:A].    \{\muparrow{}x  \mmember{}  dom(f)  supposing  \muparrow{}x  \mmember{}  dom(f)\}


Date html generated: 2011_08_10-AM-07_55_09
Last ObjectModification: 2011_06_18-AM-08_16_28

Home Index