{ [A:Type]. [B:A  Type]. [eq1,eq2:EqDecider(A)]. [f:a:A fp-B[a]].
  [x:A].
    x  dom(f) = x  dom(f) }

{ Proof }



Definitions occuring in Statement :  fpf-dom: x  dom(f) fpf: a:A fp-B[a] bool: uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] so_apply: x[s] fpf-dom: x  dom(f) member: t  T pi1: fst(t) all: x:A. B[x] implies: P  Q prop: so_lambda: x.t[x] fpf: a:A fp-B[a] bool: unit: Unit iff: P  Q and: P  Q not: A uimplies: b supposing a false: False it: btrue: tt bfalse: ff
Lemmas :  deq-member_wf bool_wf iff_transitivity assert_wf l_member_wf iff_weakening_uiff eqtt_to_assert assert-deq-member btrue_wf bnot_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_iff bfalse_wf fpf_wf deq_wf

\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq1,eq2:EqDecider(A)].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[x:A].
    x  \mmember{}  dom(f)  =  x  \mmember{}  dom(f)


Date html generated: 2011_08_10-AM-07_55_06
Last ObjectModification: 2011_06_18-AM-08_16_26

Home Index