Nuprl Lemma : not_functionality_wrt_iff
∀[P,Q:ℙ].  {¬P ⇐⇒ ¬Q} supposing P ⇐⇒ Q
Proof
Definitions occuring in Statement : 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
not: ¬A
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
not_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
lambdaFormation, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
Error :productIsType, 
Error :functionIsType, 
Error :universeIsType, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    \{\mneg{}P  \mLeftarrow{}{}\mRightarrow{}  \mneg{}Q\}  supposing  P  \mLeftarrow{}{}\mRightarrow{}  Q
Date html generated:
2019_06_20-AM-11_17_05
Last ObjectModification:
2018_09_26-AM-10_24_37
Theory : core_2
Home
Index