{ [A:Type]
    f,g:a:A fp-Top. eq:EqDecider(A). x:A.
      ((x  fpf-domain(f  g))  (x  fpf-domain(f))  (x  fpf-domain(g))) }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf-domain: fpf-domain(f) fpf: a:A fp-B[a] uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: P  Q or: P  Q universe: Type l_member: (x  l) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] member: t  T so_lambda: x.t[x] iff: P  Q prop: and: P  Q implies: P  Q rev_implies: P  Q or: P  Q guard: {T} so_apply: x[s]
Lemmas :  member-fpf-domain fpf-join_wf top_wf deq_wf fpf_wf assert_wf fpf-dom_wf l_member_wf fpf-domain_wf iff_functionality_wrt_iff fpf-join-dom

\mforall{}[A:Type]
    \mforall{}f,g:a:A  fp->  Top.  \mforall{}eq:EqDecider(A).  \mforall{}x:A.
        ((x  \mmember{}  fpf-domain(f  \moplus{}  g))  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  fpf-domain(f))  \mvee{}  (x  \mmember{}  fpf-domain(g)))


Date html generated: 2011_08_10-AM-07_59_31
Last ObjectModification: 2011_06_18-AM-08_19_02

Home Index