{ [A:Type]
    eq:EqDecider(A)
      [B:A  Type]
        L:a:A fp-B[a] List. x:A.
          ((x  fpf-domain((L)))  (fL. (x  dom(f))  ((L)(x) = f(x)))) }

{ Proof }



Definitions occuring in Statement :  fpf-join-list: (L) fpf-ap: f(x) fpf-domain: fpf-domain(f) fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies: P  Q and: P  Q function: x:A  B[x] list: type List universe: Type equal: s = t l_exists: (xL. P[x]) l_member: (x  l) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] so_apply: x[s] member: t  T so_lambda: x.t[x] implies: P  Q subtype: S  T uimplies: b supposing a rev_implies: P  Q iff: P  Q and: P  Q prop:
Lemmas :  fpf-join-list-ap fpf_wf deq_wf l_member_wf fpf-domain_wf fpf-join-list_wf top_wf fpf-trivial-subtype-top member-fpf-domain

\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type]
            \mforall{}L:a:A  fp->  B[a]  List.  \mforall{}x:A.
                ((x  \mmember{}  fpf-domain(\moplus{}(L)))  {}\mRightarrow{}  (\mexists{}f\mmember{}L.  (\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (\moplus{}(L)(x)  =  f(x))))


Date html generated: 2011_08_10-AM-08_01_17
Last ObjectModification: 2011_06_18-AM-08_19_55

Home Index