Nuprl Lemma : fpf-normalize-ap

[A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [g:x:A fp-B[x]]. [x:A].
  fpf-normalize(eq;g)(x) = g(x) supposing x  dom(g)


Proof not projected




Definitions occuring in Statement :  fpf-normalize: fpf-normalize(eq;g) fpf-ap: f(x) fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t deq: EqDecider(T)
Definitions :  so_apply: x[s] fpf-dom: x  dom(f) fpf-ap: f(x) fpf-normalize: fpf-normalize(eq;g) pi2: snd(t) reduce: reduce(f;k;as) fpf-join: f  g fpf-single: x : v fpf-empty: pi1: fst(t) append: as @ bs fpf-cap: f(x)?z deq-member: deq-member(eq;x;L) member: t  T so_lambda: x.t[x] implies: P  Q all: x:A. B[x] top: Top prop: bfalse: ff ifthenelse: if b then t else f fi  assert: b bor: p q eqof: eqof(d) btrue: tt guard: {T} subtype: S  T and: P  Q true: True squash: T fpf: a:A fp-B[a] uall: [x:A]. B[x] false: False deq: EqDecider(T) bool: unit: Unit uimplies: b supposing a uiff: uiff(P;Q) not: A iff: P  Q rev_implies: P  Q or: P  Q it:
Lemmas :  assert_wf fpf-dom_wf fpf-trivial-subtype-top fpf_wf deq_wf top_wf list-subtype l_member_wf equal_wf false_wf eqof_wf bool_wf uiff_transitivity eqtt_to_assert assert-deq bnot_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff deq-member_wf and_wf member_wf assert-deq-member cons_member

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[g:x:A  fp->  B[x]].  \mforall{}[x:A].
    fpf-normalize(eq;g)(x)  =  g(x)  supposing  \muparrow{}x  \mmember{}  dom(g)


Date html generated: 2012_01_23-AM-11_56_24
Last ObjectModification: 2011_12_10-PM-12_57_40

Home Index