{ [A,C:Type]. [B:A  Type]. [eqa:EqDecider(A)]. [eqc,eqc':EqDecider(C)].
  [r:A  C]. [f:a:A fp-B[a]]. [a:A].
    (rename(r;f)(r a) = f(a)) supposing ((a  dom(f)) and Inj(A;C;r)) }

{ Proof }



Definitions occuring in Statement :  fpf-rename: rename(r;f) fpf-ap: f(x) fpf-dom: x  dom(f) fpf: a:A fp-B[a] inject: Inj(A;B;f) assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] apply: f a function: x:A  B[x] universe: Type equal: s = t deq: EqDecider(T)
Definitions :  so_apply: x[s] fpf-ap: f(x) fpf-rename: rename(r;f) pi2: snd(t) pi1: fst(t) member: t  T so_lambda: x.t[x] exists: x:A. B[x] and: P  Q prop: fpf: a:A fp-B[a] uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q fpf-dom: x  dom(f) iff: P  Q rev_implies: P  Q cand: A c B inject: Inj(A;B;f) guard: {T}
Lemmas :  hd-filter eqof_wf assert_wf fpf-dom_wf fpf-trivial-subtype-top inject_wf fpf_wf deq_wf l_member_wf assert-deq-member iff_weakening_uiff uiff_inversion deq_property

\mforall{}[A,C:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[eqc,eqc':EqDecider(C)].  \mforall{}[r:A  {}\mrightarrow{}  C].
\mforall{}[f:a:A  fp->  B[a]].  \mforall{}[a:A].
    (rename(r;f)(r  a)  =  f(a))  supposing  ((\muparrow{}a  \mmember{}  dom(f))  and  Inj(A;C;r))


Date html generated: 2011_08_10-AM-08_04_36
Last ObjectModification: 2011_06_18-AM-08_22_40

Home Index