{ [A:Type]. [B:A  Type]. [eq:EqDecider(A)]. [f,g:a:A fp-B[a]].
    f  g supposing f = g }

{ Proof }



Definitions occuring in Statement :  fpf-sub: f  g fpf: a:A fp-B[a] uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] so_apply: x[s] uimplies: b supposing a fpf-sub: f  g member: t  T prop: so_lambda: x.t[x] all: x:A. B[x] implies: P  Q cand: A c B
Lemmas :  fpf-sub_wf pair_wf assert_wf fpf-dom_wf fpf-trivial-subtype-top assert_witness fpf_wf deq_wf fpf-ap_wf

\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  B[a]].    f  \msubseteq{}  g  supposing  f  =  g


Date html generated: 2011_08_10-AM-07_57_23
Last ObjectModification: 2011_06_18-AM-08_17_41

Home Index