{ [T:Type]. [g1,g2:LabeledGraph(T)].
    (is-dag(lg-append(g1;g2))) supposing (is-dag(g2) and is-dag(g1)) }

{ Proof }



Definitions occuring in Statement :  is-dag: is-dag(g) lg-append: lg-append(g1;g2) labeled-graph: LabeledGraph(T) uimplies: b supposing a uall: [x:A]. B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a is-dag: is-dag(g) member: t  T all: x:A. B[x] implies: P  Q int_seg: {i..j} and: P  Q lelt: i  j < k prop: nat: or: P  Q le: A  B iff: P  Q not: A false: False guard: {T}
Lemmas :  lg-edge_wf lg-append_wf int_seg_wf lg-size_wf nat_wf is-dag_wf labeled-graph_wf lg-size-append lg-edge-append le_wf

\mforall{}[T:Type].  \mforall{}[g1,g2:LabeledGraph(T)].
    (is-dag(lg-append(g1;g2)))  supposing  (is-dag(g2)  and  is-dag(g1))


Date html generated: 2011_08_16-PM-06_42_36
Last ObjectModification: 2011_06_20-AM-02_01_32

Home Index