{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [b,f:Top]. [e:E].
    (e  es-interface-accum(f;b;X) ~ e  X) }

{ Proof }



Definitions occuring in Statement :  es-interface-accum: es-interface-accum(f;x;X) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uall: [x:A]. B[x] top: Top universe: Type sqequal: s ~ t
Definitions :  bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) false: False lt_int: i <z j le_int: i z j bfalse: ff set: {x:A| B[x]}  real: grp_car: |g| nat: limited-type: LimitedType btrue: tt prop: uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n apply: f a bag-size: bag-size(bs) eq_int: (i = j) assert: b bnot: b int: unit: Unit union: left + right implies: P  Q bool: subtype: S  T all: x:A. B[x] equal: s = t eclass: EClass(A[eo; e]) es-interface-accum: es-interface-accum(f;x;X) lambda: x.A[x] in-eclass: e  X universe: Type sqequal: s ~ t bag: bag(T) es-E: E event_ordering: EO event-ordering+: EO+(Info) function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] member: t  T top: Top Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  RepUR: Error :RepUR
Lemmas :  top_wf eq_int_wf assert_wf not_wf nat_wf bag-size_wf bnot_wf bool_wf assert_of_eq_int not_functionality_wrt_uiff assert_of_bnot uiff_transitivity eqff_to_assert eqtt_to_assert event-ordering+_wf bag_wf event-ordering+_inc es-E_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[b,f:Top].  \mforall{}[e:E].
    (e  \mmember{}\msubb{}  es-interface-accum(f;b;X)  \msim{}  e  \mmember{}\msubb{}  X)


Date html generated: 2011_08_16-PM-04_35_37
Last ObjectModification: 2011_06_20-AM-00_58_32

Home Index