{ [A:']. [B:Type]. [x:dataflow(A;bag(B))].  is-null-df(x)   supposing A }

{ Proof }



Definitions occuring in Statement :  is-null-df: is-null-df(x) dataflow: dataflow(A;B) bool: uimplies: b supposing a uall: [x:A]. B[x] squash: T member: t  T universe: Type bag: bag(T)
Definitions :  atom: Atom$n int: atom: Atom rec: rec(x.A[x]) quotient: x,y:A//B[x; y] tunion: x:A.B[x] b-union: A  B implies: P  Q list: type List union: left + right strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B valueall-type: valueall-type(T) null-dataflow: null-dataflow() eq_term: a == b set: {x:A| B[x]}  bnot: b bfalse: ff btrue: tt function: x:A  B[x] all: x:A. B[x] primrec: primrec(n;b;c) corec: corec(T.F[T]) axiom: Ax uall: [x:A]. B[x] bag: bag(T) dataflow: dataflow(A;B) uimplies: b supposing a universe: Type prop: squash: T isect: x:A. B[x] member: t  T equal: s = t bool: is-null-df: is-null-df(x)
Lemmas :  valueall-type_wf dataflow_wf bag_wf null-dataflow_wf eq_term_wf squash_wf dataflow-valueall-type

\mforall{}[A:\mBbbU{}'].  \mforall{}[B:Type].  \mforall{}[x:dataflow(A;bag(B))].    is-null-df(x)  \mmember{}  \mBbbB{}  supposing  \mdownarrow{}A


Date html generated: 2011_08_16-AM-09_48_04
Last ObjectModification: 2011_02_03-PM-01_27_36

Home Index