{ [A:']. [B:Type].  valueall-type(dataflow(A;B)) supposing A }

{ Proof }



Definitions occuring in Statement :  dataflow: dataflow(A;B) uimplies: b supposing a uall: [x:A]. B[x] squash: T universe: Type valueall-type: valueall-type(T)
Definitions :  nat: fun_exp: f^n apply: f a exists: x:A. B[x] ext-eq: A  B implies: P  Q lambda: x.A[x] so_lambda: x.t[x] equal: s = t set: {x:A| B[x]}  strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] dataflow: dataflow(A;B) uall: [x:A]. B[x] valueall-type: valueall-type(T) uimplies: b supposing a universe: Type prop: squash: T member: t  T isect: x:A. B[x] fpf-dom: x  dom(f) false: False guard: {T} pair: <a, b> fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) tag-by: zT rev_implies: P  Q or: P  Q iff: P  Q record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B union: left + right bag: Error :bag,  list: type List top: Top true: True intensional-universe: IType fpf: a:A fp-B[a] sq_type: SQType(T) fpf-cap: f(x)?z natural_number: $n p-outcome: Outcome void: Void real: subtype: S  T rationals: int: primrec: primrec(n;b;c) Unfold: Error :Unfold,  BHyp: Error :BHyp,  Auto: Error :Auto,  parameter: parm{i} CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  fun_exp_wf function-valueall-type top_wf not_wf false_wf le_wf subtype_rel_self subtype_rel_simple_product subtype_rel_function subtype_base_sq member_wf intensional-universe_wf dataflow_wf squash_wf corec-valueall-type subtype_rel_wf ext-eq_wf valueall-type_wf nat_wf

\mforall{}[A:\mBbbU{}'].  \mforall{}[B:Type].    valueall-type(dataflow(A;B))  supposing  \mdownarrow{}A


Date html generated: 2011_08_10-AM-08_13_34
Last ObjectModification: 2011_06_18-AM-08_29_18

Home Index