{ [Info:Type]. [es:EO+(Info)]. [X,Y:EClass(Top)]. [d:Top]. [e:E].
    (e  (X'?d) when Y ~ e  Y) }

{ Proof }



Definitions occuring in Statement :  es-prior-class-when: (X'?d) when Y in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uall: [x:A]. B[x] top: Top universe: Type sqequal: s ~ t
Definitions :  lambda: x.A[x] subtype: S  T function: x:A  B[x] all: x:A. B[x] equal: s = t universe: Type sqequal: s ~ t so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) top: Top uall: [x:A]. B[x] isect: x:A. B[x] member: t  T es-E: E event-ordering+: EO+(Info) event_ordering: EO Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) false: False limited-type: LimitedType prop: bfalse: ff btrue: tt decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q assert: b bnot: b es-prior-class-when: (X'?d) when Y in-eclass: e  X implies: P  Q bool: union: left + right unit: Unit int: RepeatFor: Error :RepeatFor,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf not_wf assert_wf in-eclass_wf bool_wf eclass_wf top_wf es-E_wf event-ordering+_inc event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].  \mforall{}[d:Top].  \mforall{}[e:E].    (e  \mmember{}\msubb{}  (X'?d)  when  Y  \msim{}  e  \mmember{}\msubb{}  Y)


Date html generated: 2011_08_16-PM-05_40_45
Last ObjectModification: 2011_06_20-AM-01_30_05

Home Index