{ [T:Type]
    dT:EqDecider(T). L:T List. x,y:T.
      ((x  L)  (y  L)  x before y  L supposing index(L;x) < index(L;y)) }

{ Proof }



Definitions occuring in Statement :  l_index: index(L;x) uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q less_than: a < b list: type List universe: Type l_before: x before y  l l_member: (x  l) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q uimplies: b supposing a member: t  T prop: squash: T true: True rev_implies: P  Q iff: P  Q and: P  Q int_seg: {i..j}
Lemmas :  l_index_wf int_seg_wf length_wf1 l_member_wf deq_wf l_before_select l_before_wf squash_wf true_wf select_l_index

\mforall{}[T:Type]
    \mforall{}dT:EqDecider(T).  \mforall{}L:T  List.  \mforall{}x,y:T.
        ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  x  before  y  \mmember{}  L  supposing  index(L;x)  <  index(L;y))


Date html generated: 2011_08_10-AM-07_51_14
Last ObjectModification: 2011_06_18-AM-08_13_57

Home Index