{ [T:Type]. [dT:EqDecider(T)]. [L:T List]. [x:T].
    L[index(L;x)] = x supposing (x  L) }

{ Proof }



Definitions occuring in Statement :  l_index: index(L;x) select: l[i] uimplies: b supposing a uall: [x:A]. B[x] list: type List universe: Type equal: s = t l_member: (x  l) deq: EqDecider(T)
Definitions :  prop: and: P  Q lelt: i  j < k member: t  T int_seg: {i..j} exists: x:A. B[x] subtype: S  T all: x:A. B[x] top: Top implies: P  Q iff: P  Q rev_implies: P  Q uimplies: b supposing a uall: [x:A]. B[x] cand: A c B nat: l_member: (x  l) l_index: index(L;x)
Lemmas :  deq_property uiff_inversion iff_weakening_uiff select_wf eqof_wf assert_wf length_wf1 le_wf top_wf length_wf_nat non_neg_length int_seg_wf l_index_wf

\mforall{}[T:Type].  \mforall{}[dT:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[x:T].    L[index(L;x)]  =  x  supposing  (x  \mmember{}  L)


Date html generated: 2011_08_10-AM-07_51_11
Last ObjectModification: 2011_06_18-AM-08_13_55

Home Index