{ [A:Type]. [eq:EqDecider(A)]. [f:a:A fp-Top]. [L:A List].
    uiff(l_disjoint(A;fst(f);L);[a:A]. (a  L) supposing a  dom(f)) }

{ Proof }



Definitions occuring in Statement :  fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uiff: uiff(P;Q) uimplies: b supposing a uall: [x:A]. B[x] top: Top pi1: fst(t) not: A list: type List universe: Type l_disjoint: l_disjoint(T;l1;l2) l_member: (x  l) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] fpf: a:A fp-B[a] top: Top uiff: uiff(P;Q) l_disjoint: l_disjoint(T;l1;l2) uimplies: b supposing a fpf-dom: x  dom(f) not: A all: x:A. B[x] and: P  Q member: t  T implies: P  Q false: False prop: subtype: S  T so_lambda: x.t[x] so_apply: x[s] iff: P  Q rev_implies: P  Q
Lemmas :  l_member_wf assert_wf deq-member_wf pi1_wf_top top_wf not_wf uall_wf deq_wf assert-deq-member

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f:a:A  fp->  Top].  \mforall{}[L:A  List].
    uiff(l\_disjoint(A;fst(f);L);\mforall{}[a:A].  \mneg{}(a  \mmember{}  L)  supposing  \muparrow{}a  \mmember{}  dom(f))


Date html generated: 2011_08_10-AM-08_11_16
Last ObjectModification: 2011_06_18-AM-08_26_48

Home Index