{ 
[T:Type]. 
[eq:EqDecider(T)]. 
[a,b,c:T List].
    l_disjoint(T;l_intersection(eq;b;c);a) 
    supposing l_disjoint(T;b;a) 
 l_disjoint(T;c;a) }
{ Proof }
Definitions occuring in Statement : 
l_intersection: l_intersection(eq;L1;L2), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
or: P 
 Q, 
list: type List, 
universe: Type, 
l_disjoint: l_disjoint(T;l1;l2), 
deq: EqDecider(T)
Definitions : 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
or: P 
 Q, 
l_disjoint: l_disjoint(T;l1;l2), 
member: t 
 T, 
all:
x:A. B[x], 
not:
A, 
and: P 
 Q, 
implies: P 
 Q, 
false: False, 
prop:
, 
rev_implies: P 
 Q, 
iff: P 

 Q
Lemmas : 
l_member_wf, 
l_intersection_wf, 
l_disjoint_wf, 
deq_wf, 
not_functionality_wrt_iff, 
and_functionality_wrt_iff, 
member-intersection
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b,c:T  List].
    l\_disjoint(T;l\_intersection(eq;b;c);a)  supposing  l\_disjoint(T;b;a)  \mvee{}  l\_disjoint(T;c;a)
Date html generated:
2011_08_10-AM-07_48_59
Last ObjectModification:
2011_06_18-AM-08_13_19
Home
Index