{ [es:EO]. [P:E  ]. [d:a:E  Dec(P[a])].
    (last-solution(es;P;d)  E  (E + Top)) }

{ Proof }



Definitions occuring in Statement :  last-solution: last-solution(es;P;d) es-E: E event_ordering: EO decidable: Dec(P) uall: [x:A]. B[x] top: Top prop: so_apply: x[s] member: t  T function: x:A  B[x] union: left + right
Definitions :  strong-subtype: strong-subtype(A;B) list: type List le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B fpf: a:A fp-B[a] axiom: Ax last-solution: last-solution(es;P;d) top: Top union: left + right apply: f a so_apply: x[s] decidable: Dec(P) isect: x:A. B[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) all: x:A. B[x] uall: [x:A]. B[x] function: x:A  B[x] prop: universe: Type es-E: E record+: record+ member: t  T equal: s = t event_ordering: EO infix_ap: x f y record-select: r.x tactic: Error :tactic,  unit: Unit void: Void subtype: S  T suptype: suptype(S; T) guard: {T} sq_type: SQType(T) false: False pair: <a, b> bool: pi1: fst(t) inl: inl x  it: inr: inr x  decide: case b of inl(x) =s[x] | inr(y) =t[y] es-causl: (e < e') es-loc: loc(e) limited-type: LimitedType Id: Id set: {x:A| B[x]}  implies: P  Q so_lambda: x.t[x] last-event lambda: x.A[x] Auto: Error :Auto,  es-le: e loc e'  es-locl: (e <loc e') cand: A c B exists: x:A. B[x] alle-le: ee'.P[e] or: P  Q CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  Unfold: Error :Unfold
Lemmas :  es-le_wf es-locl_wf not_wf alle-le_wf uall_wf Id_wf last-event es-loc_wf es-le-loc it_wf unit_wf pi1_wf_top event_ordering_wf decidable_wf member_wf top_wf es-E_wf

\mforall{}[es:EO].  \mforall{}[P:E  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:a:E  {}\mrightarrow{}  Dec(P[a])].    (last-solution(es;P;d)  \mmember{}  E  {}\mrightarrow{}  (E  +  Top))


Date html generated: 2011_08_16-AM-10_53_09
Last ObjectModification: 2011_06_18-AM-09_26_39

Home Index