{ p,q:IdLnk List. i,j,k:Id.
    (r:IdLnk List. lconnects(r;i;k)) supposing 
       (lconnects(q;j;k) and 
       lconnects(p;i;j)) }

{ Proof }



Definitions occuring in Statement :  lconnects: lconnects(p;i;j) IdLnk: IdLnk Id: Id uimplies: b supposing a all: x:A. B[x] exists: x:A. B[x] list: type List
Definitions :  all: x:A. B[x] member: t  T uimplies: b supposing a lconnects: lconnects(p;i;j) exists: x:A. B[x] and: P  Q lpath: lpath(p) implies: P  Q not: A false: False le: A  B prop: squash: T true: True top: Top subtype: S  T length: ||as|| ycomb: Y hd: hd(l) IdLnk: IdLnk Id: Id so_lambda: x.t[x] iff: P  Q assert: b null: null(as) bfalse: ff ifthenelse: if b then t else f fi  rev_implies: P  Q last: last(L) select: l[i] le_int: i z j bnot: b lt_int: i <z j btrue: tt int_seg: {i..j} uall: [x:A]. B[x] lelt: i  j < k sq_type: SQType(T) so_apply: x[s] guard: {T} decidable: Dec(P) or: P  Q
Lemmas :  IdLnk_wf select_wf length_wf2 lnk-inv_wf int_seg_wf not_wf length_wf1 lconnects_wf squash_wf true_wf Id_wf non_neg_length length_wf_nat top_wf ldst_wf subtype_base_sq product_subtype_base atom2_subtype_base last_cons false_wf decidable__equal_IdLnk ldst-inv

\mforall{}p,q:IdLnk  List.  \mforall{}i,j,k:Id.
    (\mexists{}r:IdLnk  List.  lconnects(r;i;k))  supposing  (lconnects(q;j;k)  and  lconnects(p;i;j))


Date html generated: 2011_08_10-AM-07_48_28
Last ObjectModification: 2011_06_18-AM-08_13_07

Home Index