{ [T:Type]. [g:LabeledGraph(T)].
    [i:lg-size(g)]. lg-acyclic(lg-remove(g;i)) supposing lg-acyclic(g) }

{ Proof }



Definitions occuring in Statement :  lg-acyclic: lg-acyclic(g) lg-remove: lg-remove(g;n) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] natural_number: $n universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a lg-acyclic: lg-acyclic(g) int_seg: {i..j} member: t  T all: x:A. B[x] not: A implies: P  Q false: False lelt: i  j < k nat: and: P  Q le: A  B rev_implies: P  Q iff: P  Q sq_type: SQType(T) guard: {T} prop:
Lemmas :  subtype_base_sq int_subtype_base ifthenelse_wf lt_int_wf int_seg_wf lg-size_wf nat_wf le_wf lg-connected_wf lg-remove_wf lg-acyclic_wf labeled-graph_wf lg-size-remove lg-connected-remove

\mforall{}[T:Type].  \mforall{}[g:LabeledGraph(T)].
    \mforall{}[i:\mBbbN{}lg-size(g)].  lg-acyclic(lg-remove(g;i))  supposing  lg-acyclic(g)


Date html generated: 2011_08_16-PM-06_41_05
Last ObjectModification: 2011_06_20-AM-02_00_14

Home Index