{ [T:Type]
    g:LabeledGraph(T). i:lg-size(g). a,b:lg-size(g) - 1.
      (lg-connected(lg-remove(g;i);a;b)
       lg-connected(g;if a <z i then a else a + 1 fi ;if b <z i
         then b
         else b + 1
         fi )) }

{ Proof }



Definitions occuring in Statement :  lg-connected: lg-connected(g;a;b) lg-remove: lg-remove(g;n) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) lt_int: i <z j ifthenelse: if b then t else f fi  int_seg: {i..j} uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q subtract: n - m add: n + m natural_number: $n universe: Type
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] int_seg: {i..j} implies: P  Q lg-connected: lg-connected(g;a;b) member: t  T infix_ap: x f y rel_plus: R exists: x:A. B[x] prop: nat: le: A  B not: A false: False lelt: i  j < k and: P  Q rel_exp: R^n ifthenelse: if b then t else f fi  ycomb: Y eq_int: (i = j) btrue: tt bfalse: ff cand: A c B or: P  Q guard: {T} nat_plus: decidable: Dec(P) sq_type: SQType(T) uimplies: b supposing a iff: P  Q rev_implies: P  Q subtype: S  T
Lemmas :  lg-size-remove nat_plus_properties rel_exp_wf le_wf int_seg_wf lg-edge_wf lg-remove_wf lg-size_wf nat_wf decidable__equal_int subtype_base_sq int_subtype_base nat_plus_inc ifthenelse_wf lt_int_wf lg-connected_wf labeled-graph_wf int_seg_properties lg-edge-remove member_wf rel_exp_iff

\mforall{}[T:Type]
    \mforall{}g:LabeledGraph(T).  \mforall{}i:\mBbbN{}lg-size(g).  \mforall{}a,b:\mBbbN{}lg-size(g)  -  1.
        (lg-connected(lg-remove(g;i);a;b)
        {}\mRightarrow{}  lg-connected(g;if  a  <z  i  then  a  else  a  +  1  fi  ;if  b  <z  i  then  b  else  b  +  1  fi  ))


Date html generated: 2011_08_16-PM-06_40_43
Last ObjectModification: 2011_06_20-AM-01_59_45

Home Index