{ [T:Type]. [P:T  ]. [G:LabeledGraph(T)].
    (lg-filter(P;G)  LabeledGraph(T)) }

{ Proof }



Definitions occuring in Statement :  lg-filter: lg-filter(P;G) labeled-graph: LabeledGraph(T) bool: uall: [x:A]. B[x] member: t  T function: x:A  B[x] universe: Type
Definitions :  fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) fpf-dom: x  dom(f) class-program: ClassProgram(T) pair: <a, b> inr: inr x  inl: inl x  unit: Unit btrue: tt bfalse: ff decide: case b of inl(x) =s[x] | inr(y) =t[y] intensional-universe: IType proper-iseg: L1 < L2 iseg: l1  l2 gt: i > j map: map(f;as) so_lambda: x.t[x] tag-by: zT rev_implies: P  Q iff: P  Q record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B true: True fpf-cap: f(x)?z so_apply: x[s] union: left + right or: P  Q guard: {T} assert: b l_member: (x  l) void: Void es-E-interface: E(X) implies: P  Q false: False length: ||as|| select: l[i] pi1: fst(t) bnot: b prop: grp_car: |g| lelt: i  j < k int: real: rationals: subtype: S  T natural_number: $n lg-size: lg-size(g) int_seg: {i..j} upto: upto(n) set: {x:A| B[x]}  top: Top filter: filter(P;l) nat: list: type List reduce: reduce(f;k;as) lg-remove: lg-remove(g;n) lambda: x.A[x] apply: f a let: let eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) dep-isect: Error :dep-isect,  le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] lg-filter: lg-filter(P;G) labeled-graph: LabeledGraph(T) universe: Type equal: s = t axiom: Ax function: x:A  B[x] bool: uall: [x:A]. B[x] isect: x:A. B[x] member: t  T CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  Try: Error :Try,  tactic: Error :tactic
Lemmas :  top_wf pi1_wf_top bnot_wf int_seg_wf upto_wf nat_wf lg-size_wf filter_wf subtype_rel_wf labeled-graph_wf member_wf select_wf le_wf lg-remove_wf reduce_wf bool_wf list-subtype l_member_wf filter_type assert_wf int_seg_properties Error :dep-isect_wf,  length_wf_nat intensional-universe_wf bfalse_wf true_wf btrue_wf false_wf unit_wf subtype_rel_list subtype_rel_simple_product subtype_rel_self nat_properties

\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[G:LabeledGraph(T)].    (lg-filter(P;G)  \mmember{}  LabeledGraph(T))


Date html generated: 2011_08_16-PM-06_38_51
Last ObjectModification: 2011_06_20-AM-01_57_41

Home Index