{ [Info,A,T:Type].
    [es:EO+(Info)]. [X:EClass(T  A)]. [e:E].
      MaxFst(X)(e) ~ accum_list(p1,e.if fst(p1) <z fst(X(e))
      then X(e)
      else p1
      fi ;e.X(e);(X)(e)) 
      supposing e  MaxFst(X) 
    supposing T r  }

{ Proof }



Definitions occuring in Statement :  max-fst-class: MaxFst(X) es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E subtype_rel: A r B lt_int: i <z j assert: b ifthenelse: if b then t else f fi  uimplies: b supposing a uall: [x:A]. B[x] pi1: fst(t) product: x:A  B[x] int: universe: Type sqequal: s ~ t accum_list: accum_list(a,x.f[a; x];x.base[x];L)
Definitions :  max-fst-class: MaxFst(X) member: t  T so_lambda: x.t[x] top: Top all: x:A. B[x] subtype: S  T so_lambda: x y.t[x; y] uall: [x:A]. B[x] uimplies: b supposing a so_apply: x[s] so_apply: x[s1;s2]
Lemmas :  max-f-class-val pi1_wf_top assert_wf in-eclass_wf max-fst-class_wf es-interface-subtype_rel2 es-E_wf event-ordering+_inc event-ordering+_wf top_wf eclass_wf

\mforall{}[Info,A,T:Type].
    \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(T  \mtimes{}  A)].  \mforall{}[e:E].
        MaxFst(X)(e)  \msim{}  accum\_list(p1,e.if  fst(p1)  <z  fst(X(e))  then  X(e)  else  p1  fi  ;e.X(e);\mleq{}(X)(e)) 
        supposing  \muparrow{}e  \mmember{}\msubb{}  MaxFst(X) 
    supposing  T  \msubseteq{}r  \mBbbZ{}


Date html generated: 2011_08_16-PM-04_37_46
Last ObjectModification: 2011_06_20-AM-01_00_19

Home Index