{ tg:Id. links:IdLnk List. k:Knd.
    ((k  Rcvs(tg) on links)
     (isrcv(k))  (tag(k) = tg)  (lnk(k)  links)) }

{ Proof }



Definitions occuring in Statement :  rcvs-on: Rcvs(tg) on links tagof: tag(k) lnk: lnk(k) isrcv: isrcv(k) Knd: Knd IdLnk: IdLnk Id: Id assert: b all: x:A. B[x] iff: P  Q and: P  Q list: type List equal: s = t l_member: (x  l)
Definitions :  iff: P  Q and: P  Q product: x:A  B[x] Knd: Knd list: type List IdLnk: IdLnk Id: Id all: x:A. B[x] function: x:A  B[x] member: t  T equal: s = t rcvs-on: Rcvs(tg) on links rev_implies: P  Q map: map(f;as) combination: Combination(n;T) listp: A List exists: x:A. B[x] apply: f a lambda: x.A[x] rcv: rcv(l,tg) subtype_rel: A r B strong-subtype: strong-subtype(A;B) union: left + right atom: Atom$n isrcv: isrcv(k) cand: A c B prop: l_member: (x  l) universe: Type tagof: tag(k) lnk: lnk(k) implies: P  Q assert: b select: l[i] remove-repeats: remove-repeats(eq;L) last: last(L) hd: hd(l) set: {x:A| B[x]}  append: as @ bs limited-type: LimitedType nil: [] cons: [car / cdr] or: P  Q so_apply: x[s] nat: bool: less_than: a < b ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] isrcv_rcv: isrcv_rcv{isrcv_rcv_compseq_tag_def:o}(tg; l) true: True tag_rcv: tag_rcv{tag_rcv_compseq_tag_def:o}(tg; l) sq_type: SQType(T) guard: {T} lnk_rcv: lnk_rcv{lnk_rcv_compseq_tag_def:o}(tg; l) pair: <a, b> tactic: Error :tactic,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  Auto: Error :Auto,  false: False
Lemmas :  Id_sq Knd_sq l_member_subtype lnk_wf l_member_wf tagof_wf isrcv_wf assert_wf rcv_wf map_wf rev_implies_wf iff_wf member_map iff_functionality_wrt_iff Id_wf IdLnk_wf Knd_wf

\mforall{}tg:Id.  \mforall{}links:IdLnk  List.  \mforall{}k:Knd.
    ((k  \mmember{}  Rcvs(tg)  on  links)  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}isrcv(k))  \mwedge{}  (tag(k)  =  tg)  \mwedge{}  (lnk(k)  \mmember{}  links))


Date html generated: 2010_08_26-PM-11_34_16
Last ObjectModification: 2009_10_09-PM-10_31_10

Home Index