{ x:Id. [T:Type]. (Normal(T)  Normal(x : T)) }

{ Proof }



Definitions occuring in Statement :  normal-ds: Normal(ds) normal-type: Normal(T) fpf-single: x : v Id: Id uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q universe: Type
Definitions :  all: x:A. B[x] uall: [x:A]. B[x] implies: P  Q normal-ds: Normal(ds) fpf-all: xdom(f). v=f(x)   P[x; v] member: t  T top: Top so_lambda: x.t[x] fpf-single: x : v fpf-ap: f(x) pi2: snd(t) so_apply: x[s] normal-type: Normal(T) prop:
Lemmas :  assert_witness fpf-dom_wf Id_wf id-deq_wf fpf-single_wf top_wf assert_wf normal-type_wf

\mforall{}x:Id.  \mforall{}[T:Type].  (Normal(T)  {}\mRightarrow{}  Normal(x  :  T))


Date html generated: 2011_08_10-AM-08_12_55
Last ObjectModification: 2011_06_18-AM-08_27_53

Home Index