{ 
[P:Pi_term]
    P = (pioption-left(P) + pioption-right(P)) supposing 
pioption?(P) }
{ Proof }
Definitions occuring in Statement : 
pioption-right: pioption-right(x), 
pioption-left: pioption-left(x), 
pioption?: pioption?(x), 
pioption: (left + right), 
pi_term: Pi_term, 
assert:
b, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
equal: s = t
Definitions : 
uall:
[x:A]. B[x], 
pi_term: Pi_term, 
uimplies: b supposing a, 
pioption?: pioption?(x), 
pioption: (left + right), 
pioption-left: pioption-left(x), 
pioption-right: pioption-right(x), 
member: t 
 T, 
squash:
T, 
true: True, 
unit: Unit, 
false: False, 
implies: P 
 Q, 
prop:
, 
it:
, 
pizero: 0, 
not:
A, 
picomm: pre.body, 
pipar: (left | right), 
pirep: !body, 
pinew: (new name. body)
Lemmas : 
pi_term_wf, 
btrue_neq_bfalse, 
assert_wf, 
pioption?_wf, 
pizero_wf, 
picomm_wf, 
pioption_wf, 
pipar_wf, 
pirep_wf, 
pinew_wf, 
assert_elim, 
bfalse_wf, 
squash_wf, 
true_wf
\mforall{}[P:Pi\_term].  P  =  (pioption-left(P)  +  pioption-right(P))  supposing  \muparrow{}pioption?(P)
Date html generated:
2011_08_17-PM-06_45_41
Last ObjectModification:
2011_06_18-PM-12_16_07
Home
Index