{ [M,E:Type  Type].
    (process(P.M[P];P.E[P]) r (M[process(P.M[P];P.E[P])]
        (process(P.M[P];P.E[P])  E[process(P.M[P];P.E[P])]))) supposing 
       (Continuous+(P.E[P]) and 
       Continuous+(P.M[P])) }

{ Proof }



Definitions occuring in Statement :  process: process(P.M[P];P.E[P]) strong-type-continuous: Continuous+(T.F[T]) subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] product: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a so_apply: x[s] process: process(P.M[P];P.E[P]) member: t  T so_lambda: x.t[x] type-continuous: Continuous(T.F[T]) strong-type-continuous: Continuous+(T.F[T]) ext-eq: A  B and: P  Q prop:
Lemmas :  corec-subtype strong-type-continuous_wf continuous-function strong-continuous-product continuous-id nat_wf

\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (process(P.M[P];P.E[P])  \msubseteq{}r  (M[process(P.M[P];P.E[P])]
          {}\mrightarrow{}  (process(P.M[P];P.E[P])  \mtimes{}  E[process(P.M[P];P.E[P])])))  supposing 
          (Continuous+(P.E[P])  and 
          Continuous+(P.M[P]))


Date html generated: 2011_08_16-AM-09_53_14
Last ObjectModification: 2011_06_18-AM-08_35_41

Home Index