{ 
[M,E:Type 
 Type].
    (process(P.M[P];P.E[P]) 
r (M[process(P.M[P];P.E[P])]
       
 (process(P.M[P];P.E[P]) 
 E[process(P.M[P];P.E[P])]))) supposing 
       (Continuous+(P.E[P]) and 
       Continuous+(P.M[P])) }
{ Proof }
Definitions occuring in Statement : 
process: process(P.M[P];P.E[P]), 
strong-type-continuous: Continuous+(T.F[T]), 
subtype_rel: A 
r B, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s], 
function: x:A 
 B[x], 
product: x:A 
 B[x], 
universe: Type
Definitions : 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
so_apply: x[s], 
process: process(P.M[P];P.E[P]), 
member: t 
 T, 
so_lambda: 
x.t[x], 
type-continuous: Continuous(T.F[T]), 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A 
 B, 
and: P 
 Q, 
prop:
Lemmas : 
corec-subtype, 
strong-type-continuous_wf, 
continuous-function, 
strong-continuous-product, 
continuous-id, 
nat_wf
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (process(P.M[P];P.E[P])  \msubseteq{}r  (M[process(P.M[P];P.E[P])]
          {}\mrightarrow{}  (process(P.M[P];P.E[P])  \mtimes{}  E[process(P.M[P];P.E[P])])))  supposing 
          (Continuous+(P.E[P])  and 
          Continuous+(P.M[P]))
Date html generated:
2011_08_16-AM-09_53_14
Last ObjectModification:
2011_06_18-AM-08_35_41
Home
Index