{ [S:LimitedType]. [T:Type]. [x:Id]. [P:S  ]. [f:Id
                                                          T
                                                          {v:S| P[v]} ].
  [g:T  (Id List)]. [hdr:Name].
    (prop-rule-realizer-out(S;x;f;g;hdr)
     T + Top  LabeledDAG(Id  pCom(P.Message))) }

{ Proof }



Definitions occuring in Statement :  prop-rule-realizer-out: prop-rule-realizer-out(T;x;f;g;hdr) Message: Message pCom: pCom(P.M[P]) ldag: LabeledDAG(T) Id: Id name: Name assert: b bool: uall: [x:A]. B[x] top: Top so_apply: x[s] member: t  T set: {x:A| B[x]}  function: x:A  B[x] product: x:A  B[x] union: left + right list: type List universe: Type limited-type: LimitedType
Definitions :  lg-nil: lg-nil() make-lg: make-lg(L) l_member: (x  l) atom: Atom listp: A List combination: Combination(n;T) token: "$token" pair: <a, b> map: map(f;as) lambda: x.A[x] prop: apply: f a so_apply: x[s] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) axiom: Ax prop-rule-realizer-out: prop-rule-realizer-out(T;x;f;g;hdr) pCom: pCom(P.M[P]) ldag: LabeledDAG(T) top: Top union: left + right name: Name list: type List assert: b fpf: a:A fp-B[a] subtype: S  T es-E-interface: E(X) uimplies: b supposing a subtype_rel: A r B eclass: EClass(A[eo; e]) isect: x:A. B[x] product: x:A  B[x] exists: x:A. B[x] intensional-universe: IType set: {x:A| B[x]}  atom: Atom$n all: x:A. B[x] uall: [x:A]. B[x] function: x:A  B[x] bool: limited-type: LimitedType Id: Id equal: s = t Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  ORELSE: Error :ORELSE,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  Message: Message so_lambda: x.t[x] parameter: parm{i} MaAuto: Error :MaAuto,  universe: Type member: t  T AssertBY: Error :AssertBY,  tactic: Error :tactic,  Com: Com(P.M[P]) mData: mData pMsg: pMsg(P.M[P]) rev_implies: P  Q or: P  Q implies: P  Q iff: P  Q true: True type-monotone: Monotone(T.F[T]) Process: Process(P.M[P]) mk-tagged: mk-tagged(tg;x)
Lemmas :  pMsg_wf Process_wf subtype_rel_self uall_wf type-monotone_wf mk-tagged_wf_pCom_msg make-lg_wf_dag subtype_rel_wf name_wf assert_wf member_wf Id_wf map_wf top_wf Message_wf pCom_wf bool_wf ldag_wf intensional-universe_wf limited-type_wf lg-nil_wf_dag

\mforall{}[S:LimitedType].  \mforall{}[T:Type].  \mforall{}[x:Id].  \mforall{}[P:S  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:Id  {}\mrightarrow{}  T  {}\mrightarrow{}  \{v:S|  \muparrow{}P[v]\}  ].
\mforall{}[g:T  {}\mrightarrow{}  (Id  List)].  \mforall{}[hdr:Name].
    (prop-rule-realizer-out(S;x;f;g;hdr)  \mmember{}  T  +  Top  {}\mrightarrow{}  LabeledDAG(Id  \mtimes{}  pCom(P.Message)))


Date html generated: 2011_08_17-PM-04_17_28
Last ObjectModification: 2011_06_18-AM-11_33_38

Home Index