{ 
[P:Pi_term]
    pi-rank(P) = (pi-rank(picomm-body(P)) + 1) supposing 
picomm?(P) }
{ Proof }
Definitions occuring in Statement : 
pi-rank: pi-rank(p), 
picomm-body: picomm-body(x), 
picomm?: picomm?(x), 
pi_term: Pi_term, 
assert:
b, 
nat:
, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
add: n + m, 
natural_number: $n, 
equal: s = t
Definitions : 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
member: t 
 T, 
prop:
, 
and: P 
 Q
Lemmas : 
assert_wf, 
picomm?_wf, 
pi_term_wf, 
pi-comm-decompose, 
rank-comm, 
picomm-body_wf, 
picomm-pre_wf, 
pi-rank_wf, 
nat_wf
\mforall{}[P:Pi\_term].  pi-rank(P)  =  (pi-rank(picomm-body(P))  +  1)  supposing  \muparrow{}picomm?(P)
Date html generated:
2011_08_17-PM-06_47_08
Last ObjectModification:
2011_06_18-PM-12_18_30
Home
Index