{ [P:Pi_term]
    pi-rank(P) = (pi-rank(picomm-body(P)) + 1) supposing picomm?(P) }

{ Proof }



Definitions occuring in Statement :  pi-rank: pi-rank(p) picomm-body: picomm-body(x) picomm?: picomm?(x) pi_term: Pi_term assert: b nat: uimplies: b supposing a uall: [x:A]. B[x] add: n + m natural_number: $n equal: s = t
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a member: t  T prop: and: P  Q
Lemmas :  assert_wf picomm?_wf pi_term_wf pi-comm-decompose rank-comm picomm-body_wf picomm-pre_wf pi-rank_wf nat_wf

\mforall{}[P:Pi\_term].  pi-rank(P)  =  (pi-rank(picomm-body(P))  +  1)  supposing  \muparrow{}picomm?(P)


Date html generated: 2011_08_17-PM-06_47_08
Last ObjectModification: 2011_06_18-PM-12_18_30

Home Index