{ [P:Pi_term]
    pi-rank(P) = ((pi-rank(pioption-left(P)) + pi-rank(pioption-right(P))) + 1) 
    supposing pioption?(P) }

{ Proof }



Definitions occuring in Statement :  pi-rank: pi-rank(p) pioption-right: pioption-right(x) pioption-left: pioption-left(x) pioption?: pioption?(x) pi_term: Pi_term assert: b nat: uimplies: b supposing a uall: [x:A]. B[x] add: n + m natural_number: $n equal: s = t
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a member: t  T prop: and: P  Q
Lemmas :  assert_wf pioption?_wf pi_term_wf pi-option-decompose rank-option pioption-left_wf pioption-right_wf pi-rank_wf nat_wf

\mforall{}[P:Pi\_term]
    pi-rank(P)  =  ((pi-rank(pioption-left(P))  +  pi-rank(pioption-right(P)))  +  1) 
    supposing  \muparrow{}pioption?(P)


Date html generated: 2011_08_17-PM-06_47_25
Last ObjectModification: 2011_06_18-PM-12_19_02

Home Index