{ 
[P:Pi_term]
    pi-rank(P) = ((pi-rank(pioption-left(P)) + pi-rank(pioption-right(P))) + 1) 
    supposing 
pioption?(P) }
{ Proof }
Definitions occuring in Statement : 
pi-rank: pi-rank(p), 
pioption-right: pioption-right(x), 
pioption-left: pioption-left(x), 
pioption?: pioption?(x), 
pi_term: Pi_term, 
assert:
b, 
nat:
, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
add: n + m, 
natural_number: $n, 
equal: s = t
Definitions : 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
member: t 
 T, 
prop:
, 
and: P 
 Q
Lemmas : 
assert_wf, 
pioption?_wf, 
pi_term_wf, 
pi-option-decompose, 
rank-option, 
pioption-left_wf, 
pioption-right_wf, 
pi-rank_wf, 
nat_wf
\mforall{}[P:Pi\_term]
    pi-rank(P)  =  ((pi-rank(pioption-left(P))  +  pi-rank(pioption-right(P)))  +  1) 
    supposing  \muparrow{}pioption?(P)
Date html generated:
2011_08_17-PM-06_47_25
Last ObjectModification:
2011_06_18-PM-12_19_02
Home
Index