{ [Info,A:Type]. [F:bag(A)  bag(A)].
    (rec-combined-class-0(F)  EClass(A)) }

{ Proof }



Definitions occuring in Statement :  rec-combined-class-0: rec-combined-class-0(b) eclass: EClass(A[eo; e]) uall: [x:A]. B[x] member: t  T function: x:A  B[x] universe: Type bag: bag(T)
Definitions :  CollapseTHENA: Error :CollapseTHENA,  natural_number: $n lambda: x.A[x] select: l[i] nil: [] Auto: Error :Auto,  BHyp: Error :BHyp,  CollapseTHEN: Error :CollapseTHEN,  member: t  T isect: x:A. B[x] uall: [x:A]. B[x] universe: Type axiom: Ax equal: s = t function: x:A  B[x] rec-combined-class-0: rec-combined-class-0(b) eclass: EClass(A[eo; e]) bag: bag(T) all: x:A. B[x] rec-combined-class: f|X,(self)'| so_lambda: x y.t[x; y] subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) fpf: a:A fp-B[a] top: Top int: nat: subtype: S  T rationals: real: set: {x:A| B[x]}  false: False implies: P  Q void: Void prop: p-outcome: Outcome int_seg: {i..j} list: type List lelt: i  j < k length: ||as|| event-ordering+: EO+(Info) es-E: E event_ordering: EO
Lemmas :  select_wf bag_wf int_seg_wf length_wf2 es-E_wf event-ordering+_wf eclass_wf event-ordering+_inc le_wf member_wf nat_wf false_wf not_wf rec-combined-class_wf

\mforall{}[Info,A:Type].  \mforall{}[F:bag(A)  {}\mrightarrow{}  bag(A)].    (rec-combined-class-0(F)  \mmember{}  EClass(A))


Date html generated: 2011_08_16-PM-04_53_51
Last ObjectModification: 2011_06_02-PM-05_27_14

Home Index