{ [Info,A,B:Type]. [F:bag(A)  bag(B)  bag(B)]. [X:EClass(A)].
    (F|X,Prior(self)|  EClass(B)) }

{ Proof }



Definitions occuring in Statement :  rec-combined-class-1: F|X,Prior(self)| eclass: EClass(A[eo; e]) uall: [x:A]. B[x] member: t  T function: x:A  B[x] universe: Type bag: bag(T)
Definitions :  CollapseTHENA: Error :CollapseTHENA,  natural_number: $n lambda: x.A[x] Auto: Error :Auto,  BHyp: Error :BHyp,  CollapseTHEN: Error :CollapseTHEN,  member: t  T equal: s = t isect: x:A. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] uall: [x:A]. B[x] function: x:A  B[x] bag: bag(T) universe: Type rec-combined-class-1: F|X,Prior(self)| axiom: Ax all: x:A. B[x] event-ordering+: EO+(Info) es-E: E event_ordering: EO subtype: S  T rec-combined-class: f|X,(self)'| nil: [] cons: [car / cdr] select: l[i] apply: f a subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) fpf: a:A fp-B[a] top: Top int: nat: rationals: real: set: {x:A| B[x]}  false: False implies: P  Q void: Void prop: p-outcome: Outcome int_seg: {i..j} list: type List length: ||as|| label: ...$L... t lelt: i  j < k
Lemmas :  es-E_wf event-ordering+_inc event-ordering+_wf rec-combined-class_wf nat_wf member_wf select_wf length_nil length_cons non_neg_length eclass_wf length_wf1 top_wf length_wf_nat bag_wf int_seg_wf false_wf le_wf not_wf

\mforall{}[Info,A,B:Type].  \mforall{}[F:bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].    (F|X,Prior(self)|  \mmember{}  EClass(B))


Date html generated: 2011_08_16-PM-04_54_07
Last ObjectModification: 2011_06_02-PM-05_29_01

Home Index