{ [s:SES]. [k1,k2:Key].  (MatchingKeys(k1;k2)  (Ax  MatchingKeys(k1;k2))) }

{ Proof }



Definitions occuring in Statement :  ses-key-rel: MatchingKeys(k1;k2) security-event-structure: SES encryption-key: Key uall: [x:A]. B[x] implies: P  Q member: t  T axiom: Ax
Definitions :  sdata: SecurityData event_ordering: EO es-E: E event-ordering+: EO+(Info) subtype: S  T fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) pi1: fst(t) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b union: left + right le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] prop: axiom: Ax ses-key-rel: MatchingKeys(k1;k2) lambda: x.A[x] security-event-structure: SES product: x:A  B[x] top: Top atom: Atom$n bool: Id: Id eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type implies: P  Q function: x:A  B[x] equal: s = t uall: [x:A]. B[x] encryption-key: Key isect: x:A. B[x] member: t  T Auto: Error :Auto,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  apply: f a D: Error :D,  RepeatFor: Error :RepeatFor,  tactic: Error :tactic
Lemmas :  assert_witness encryption-key_wf bool_wf Id_wf top_wf member_wf security-event-structure_wf eclass_wf ses-key-rel_wf event-ordering+_wf es-E_wf event-ordering+_inc sdata_wf

\mforall{}[s:SES].  \mforall{}[k1,k2:Key].    (MatchingKeys(k1;k2)  {}\mRightarrow{}  (Ax  \mmember{}  MatchingKeys(k1;k2)))


Date html generated: 2011_08_17-PM-07_16_04
Last ObjectModification: 2011_06_18-PM-01_04_22

Home Index