{ [Info,A,B,C:Type]. [f:Id  A  B  C]. [X:EClass(A)]. [Y:EClass(B)].
  [es:EO+(Info)]. [e:E]. [v:C].
    uiff(v  lifting-loc-2(f)|Loc,X, Y|(e);a:A
                                             b:B
                                              (a  X(e)
                                               b  Y(e)
                                               (v = (f loc(e) a b)))) }

{ Proof }



Definitions occuring in Statement :  lifting-loc-2: lifting-loc-2(f) simple-loc-comb-2: F|Loc,X, Y| classrel: v  X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) es-E: E Id: Id uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P  Q apply: f a function: x:A  B[x] universe: Type equal: s = t
Definitions :  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  RepUR: Error :RepUR,  Auto: Error :Auto,  uall: [x:A]. B[x] universe: Type isect: x:A. B[x] set: {x:A| B[x]}  squash: T uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) function: x:A  B[x] Id: Id eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] bag: bag(T) quotient: x,y:A//B[x; y] event-ordering+: EO+(Info) record+: record+ dep-isect: Error :dep-isect,  es-E: E event_ordering: EO member: t  T equal: s = t all: x:A. B[x] subtype: S  T lambda: x.A[x] lifting-loc-2: lifting-loc-2(f) simple-loc-comb-2: F|Loc,X, Y| simple-loc-comb2: simple-loc-comb2(l,a,b.F[l; a; b];X;Y)
Lemmas :  simple-loc-comb2-classrel Id_wf event-ordering+_wf event-ordering+_inc es-E_wf eclass_wf

\mforall{}[Info,A,B,C:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
\mforall{}[v:C].
    uiff(v  \mmember{}  lifting-loc-2(f)|Loc,X,  Y|(e);\mdownarrow{}\mexists{}a:A.  \mexists{}b:B.  (a  \mmember{}  X(e)  \mwedge{}  b  \mmember{}  Y(e)  \mwedge{}  (v  =  (f  loc(e)  a  b))))


Date html generated: 2011_08_17-PM-06_18_46
Last ObjectModification: 2011_06_03-AM-10_50_32

Home Index